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In recent crystal growth experiments [J. Maurer et al., Europhys. Lett. 8, 67 (1989)], faceted dendrites
have been observed. These new diffusion-limited growing shapes have been described theoretically by
means of the classical equations of dendritic growth and by using modified boundary conditions on the
faceted parts of the interface. We propose a numerical treatment of the present set of equations in the
limit of low undercooling. Steady faceted needle crystals are found with a growth rate selected by the

amplitude of the cusp in a Wulff plot.

PACS number(s): 61.50.Cj, 68.70.+w, 64.70.Dv

I. INTRODUCTION

In many growth processes, crystal shapes show facets
in specific directions [1,2]. When perpendicular to the n
direction, these facets are observed for temperatures
below T, (n), the roughening temperature for this orienta-
tion. In the case of dendritic growth, the experiments of
Maurer et al. [2] on solidification of NH,Br in water
below the roughening temperature of the (110) direction
have revealed the existence of faceted needle crystals.
These are needle crystals with a general parabolic shape
and facets close to the tip. In contrast to the completely
rough needle-crystal case, where the quantity p”v is a
constant (p is the radius of curvature of the asymptotic
parabola and v the rate along the growing direction),
quantitative study of these new objects shown that p?v
now defines two plateaus, depending on whether v is
greater or smaller than a certain velocity v,. Moreover,
the facet length A has been found to scale as v ~!/2, at
least in the first plateau of smaller velocities where facets
appear unambiguously. A theoretical explanation of
these experimental observations has been proposed by
Ben Amar and Pomeau [3]. They find that the scaling
behaviors are well explained by a diffusion-limited-
growth (DLG) model. They also argue that kinetic
effects induced by the Franck-Read mechanism [4,5]
maintain the degeneracy of the quantity p?v. These
effects mainly contribute at low velocities and are ir-
relevant when the growth rate increases, so there is no
need to introduce a roughening transition analysis to ex-
plain the existence of these two plateaus observed at low
supersaturation. A complete treatment of this problem
has not been performed to verify these predictions. The
main questions still unanswered are (i) is it possible to
find the exact shapes of faceted needle crystals using the
DLG theory plus interfacial laws characteristic of facet-
ing, and (ii) how does the introduction of facets affect the
selection mechanism of the completely rough interfaces?

The theory of rough (=nonfaceted) growing needle
crystals is well established in two models of solidification.
For vanishing surface tension, Ivantsov [6] has shown
that the solution of the needle-crystal problem yields a
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continuous set of parabolic shapes with a tip radius p,
moving at a constant velocity v characterized by a given
value P(A)=pv /2D of the Péclet number (A being the
undercooling or the supersaturation and D the diffusion
coefficient). Introducing the surface tension adds a new
relation between the velocity and the tip radius of the
Ivantsov parabola which removes this indefiniteness.
This relation is given in terms of a nonlinear eigenvalue
C=4p* /Dd, [7,8] (the capillary length d,, is of order of
the lattice spacing). Previous theoretical and numerical
works [9-14] have shown that the anisotropy of the sur-
face tension is a necessary ingredient of steady growth
and that, for each value of the anisotropy coefficient ¢,
there exists a discrete set of solutions C, independent of
the undercooling A.

In this paper, we examine two-dimensional faceted
needle-crystal growth. The main problem we discuss is
the existence of physical solutions within the DLG
theory. Because of its practical interest we studied the
simple case of steady-state growth at low undercooling.
At zero capillary number on the rough parts of the inter-
face, faceted dendrites do not exist. They cannot satisfy
all the necessary conditions: tangential linkings between
the facets and the rough parts and a continuous tempera-
ture (or concentration) field on the interface. A recent
analytical [15] treatment confirms these findings. When
one adds surface tension, a new degree of freedom ap-
pears, but also a new constraint: the vanishing of the first
derivative of the profile function at the tip. The problem
remains overconstrained and in a first numerical ap-
proach, we partially succeeded. In a previous treatment
of faceted directional solidification [16], we did not en-
counter such numerical difficulties, probably because we
treated the limit of large capillary numbers (C small)
which is irrelevant for faceted dendritic growth. For the
faceted directional solidification problem, we succeeded
in showing [16] analytically and numerically that all the
interfacial laws of faceting which follow from the model
[3] [called the Ben Amar—Pomeau (BP) model in the fol-
lowing] are satisfied. But, for the faceted dendrite prob-
lem in the presence of capillary effects, the singularities of
the ‘“‘zero” surface tension set of solutions induced nu-
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merical incertainties. So we decided to modify the nu-
merical approach of this problem by working with, in-
stead of a cusped surface tension, a strongly peaked sur-
face stiffness around the facet orientations. In this way,
we greatly simplified the free-boundary problem of facet-
ed growth and obtained stable numerical results which
satisfactorily converge when the peak is more and more
pronounced. Within this model, we were able to show
that steady faceted needle crystals exist and that the an-
isotropy coefficient is enough to select both the growth
rate and the localization of the facets.

This paper is organized as follows. In Sec. II, we ex-
plain the BP model of faceted dendritic growth in situa-
tions far from equilibrium. In Sec. III, we explain the
structure of our numerical treatment in both models.
This leads to two different free-boundary problems: one
with mixed boundary conditions at the interface and con-
straints at the facet ends, the second being a more classi-
cal one in this area. In Sec. IV, we summarize our nu-
merical results and compare them to the experiment [2].

II. FACETED CRYSTAL SHAPES

At equilibrium, the crystal shape is entirely fixed [17]
by its surface tension y(6), where 0 is the polar angle of
the surface normal n. Once the Wulff plot [W plot,
which represents y(0)] is known, the crystal shape can be
determined geometrically by the Wulff construction (W
construction): it is homothetic to the convex envelope of
the orthogonal lines to the n direction at a distance y(0).
Moreover, the equilibrium condition of a curved interface
fixes the local pressure variation AP in terms of the local
curvature ():

AP=0(0)Q= Q. (D

d*y(8)
0)+ 210
y(6) 10

o(0) is called the surface stiffness. When the W plot ex-
hibits a cusp in a specific direction 6, the W construction
leads to a facet of length A given by

_4dy

d
APA=2L
A T

40 (2)

Besides, if the surface stiffness is positive on each side of
the facet, the matching of the rough parts with the facet
becomes tangential.

The case of nonequilibrium shapes is more complex. It
is not easy to predict the shape of a growing crystal
theoretically, since there is no equivalent of the W con-
struction for this case. Moreover, one can wonder how
to introduce, in a growth process, capillary effects which
are responsible for the equilibrium crystal shape. In fact,
usually [18-20] we assume the interface to be in a quasi-
equilibrium state which entails the assumption that the
equilibrium interfacial laws (1) and (2) remain valid for
the growth process. Then, when the pressure in the
liquid phase is homogeneous, the Gibbs-Thomson-
Herring (GTH) relation reads

8T

—p=— 2L L —Ap =0 (0)0+Ap, | @
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where L is the latent heat per unit volume of solid and 6T
is the local deviation of the liquid temperature from the
melting temperature T,,. Ap; (Ap,) is the liquid-solid
chemical potential variation per unit volume of solid due
to the presence of impurities (kinetic effects). The kinetic
term Ap, measures the departure from equilibrium
which slows down the growth. For rough interfaces, the
attachment of the atoms at the interface is rather fast
compared to the typical diffusion time except at high un-
dercooling. Therefore this discontinuity is often neglect-
ed or reduced to a linear term Sv-n.

The GTH relation is valid on any smooth part of the
crystal but is not valid at =6, where d*y(6)/d 6* is not
defined and Q vanishes. If we assume that, for faceted
growth, the quasiequilibrium approximation remains val-
id, we need to modify the GTH relation according to Eq.
(2) but we cannot impose a constant temperature (or con-
centration) on the facet. The profile of the faceted part is
known, so the solidification free-boundary problem is
overdetermined when one fixes the value of the diffusion
field on each point of the facet. A way to handle this is to
average Eq. (3) over the facet length [3]:

dy | _dy
+ do

T —(Ap A . @

f pds=($)A=—

A _
A similar relation has been established by Herring in the
context of sintering [21]. As underlined in [3], the aver-
aged law (4) is necessary to solve this free-boundary prob-
lem mathematically. The central question of this paper is
whether this suffices to solve the problem of faceted crys-
tal growth. It is also a way to fix the continuity of the
temperature field on both sides of the facet.

The kinetic law Ap; which is a function of v-n depends
on the facet growth mechanism [4,5]. For crystal growth
in solutions, it is commonly thought that the Franck-
Read mechanism is responsible for the facet growth pro-
cess. Then the kinetic law depends linearly on the square
root of v at very low growth rate and has a linear depen-
dence on v when the growth rate increases. But, as em-
phasized in [3], due to the specific scaling laws of dendri-
tic growth at low supersaturation, these effects contribute
only at low velocities by increasing the facet length. In
the following, we will choose a simple form for the W
plot of a cubic crystal with two symmetric facets at +6,:

7(0)=7o{1+8[Isin(6—6;)| +|cos(6— 6,1} , (5

where 8 is the cusp coefficient. This choice defines our
model I. This form gives a constant surface stiffness on
the rough parts; also the facet length is related to the
averaged field on the facet by

({$)+{App A= =275 . (6)

This relation shows that the facet length does not bring
a new length scale, proving that the facet length scales as
the tip radius. It also implies that in a nondynamical ap-
proach the shape of the faceted needle crystal should al-
ways be the same up to a dilation depending on the un-
dercooling. As a consequence, the quantity A% is con-
stant, which is in agreement with the experimental results
of [2].
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The representation of the surface tension by Eq. (5)
leads to a Dirac distribution for the surface stiffness. It
facilitates the analytical treatment of the faceted growth
[15], but it complicates the numerical algorithm of the
free-boundary problem. In order to obtain reliable nu-
merical results, we decided to “‘soften” the Dirac distri-
bution. We performed the calculations with two different
representations of the surface stiffness:

28 a
O)=y, |1+ 2> —% 7
o( Yo . (0_00)2+a2 (7a)
_ 28 6—06,
o(0)=y, |1+ Y exp - ] . (7b)

Note that Egs. (7) are classical approximations among
others for the Dirac distribution in the limit «—0. Such
representations, which define our model II, must give
stable results independent both of a (when a is small) and
of the chosen approximation of the Dirac distribution.
This model is basically similar to [3] and it is only chosen
for numerical convenience. Moreover, some microscopic
models of faceting claim that the singularity in the sur-
face stiffness does not represent the physical reality. A
dynamical treatment of the roughening transition
[22-24], which assumes a nucleation mechanism for the
facet growth, has shown that in a growth process the
cusp of the W plot is softened near the roughening transi-
tion. That is, cuspoidal singularities in the W plot can be
replaced by pronounced dips in a smooth W plot [3]. The
theory [22-24] also assumes a velocity-dependent cusp §:
the so called dynamical roughening transition which can
explain the existence of the two plateaus as a consequence
of the disappearance of both the cusp in the W plot and
the facets when the velocity increases. The following
analysis will not address all these problems, which re-
quire a full knowledge of the microscopic mechanism: we
only focus on the possible existence of faceted dendrites
within the DLG model.

III. NUMERICAL ANALYSIS

For the case of steady shapes, the liquid-solid interface
profile is given by an integrodifferential equation which is
well established both for the symmetrical [7] and the
one-sided model [25]. Let us recall that the symmetrical
model, which assumes the equality of the diffusion
coefficient in both phases, is more adequate to describe
solidification of a pure sample. The one-sided model, on
the other hand, where the diffusion in the solid phase is
neglected, describes the diffusion of impurities con-
veniently. The experimental observation [2] that there is
no new length scale introduced by the appearance of
facets, leads us to impose a parabolic asymptotic
behavior for the faceted dendrite. Since we focus on low
undercooling, the Pelcé-Pomeau procedure [8], which
suppresses the undercooling from the initial equations, is
still applicable. Then the integrodifferential equations
satisfied by the nondimensional profile £(x) and the eigen-
value C are

(i) for the symmetrical model,
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—_ C e (x =0’ +[Ex)—E0)])
¢(x) 47 f_w dtIn (x _t)2+(x2__t2)2 ? (8a)
(ii) for the one-sided model,
__ C e =02 [E0)—E0)]
o(x) Y. f_w dtln YN
+o o [E(x)—8(6)]+(x —1)5'(2)
+— dt (t),
ﬂf—w (x —1)2+[&(x)—E&()]? ¢
(8b)

where §' is the first derivative of { with respect to x.
Note that we chose 2p as length unit so that the Ivantsov
parabola, which fits the tail of the crystal, is & (x)=—x2.
Using the definitions of the Péclet number and the non-
linear eigenvalue C, the values of the length scale p and
the growth rate v are given by

2
———d, andv—-16[P )] . 9

P= 8P(A) C do

It is important to emphasize that p does not represent the
radius of curvature of the needle-crystal tip, but the ra-
dius of curvature of the Ivantsov asymptotic parabola.
The difference between these two lengths can be impor-
tant and one must be careful about the precise definition
of p. Since the two models I and II imply different treat-
ments, we will discuss them separately.

A. Model I

The function ¢(x) represents the deviation from the
Ivantsov field on the interface. On the rough parts of the
interface, ¢ is given by the interface curvature term of the
GTH equation. On the facets, the dimensionless field is
the unknown variable, since the shape is predetermined.
Thus, ¢(x) can be written as follows: on the rough parts,

9)—§—”(X)

d(x)=4 (1462 77 , (10a)
and on the facets,
d(x)=d(x) (10b)

where A4(6) is the smooth part of the anisotropy factor of
the surface tension [ 4(68)=1, when the surface tension is
given by (5)]. For this problem, two physical constraints
must be satisfied. First, because the surface stiffness is
positive, the linkings of the different parts of the profile
must be tangential, if one assumes that this property de-
duced from the equilibrium situation still holds. The
second constraint is the continuity of the function ¢(x),
which follows from the continuity of the diffusion field
along the interface.

The numerical procedure of this problem is based on
the same approach used in the completely rough needle-
crystal problem [11], with the difference that now the
problem is mixed. On the one hand, on the rough parts
the shape is the unknown variable; on the other hand, on
the facet the dimensionless field is the unknown variable.
For this problem, it is also convenient to fix the facet
length A and to calculate the cusp coefficient § by using
Eq. (6). In the following, we will note the linking points
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between the rough parts and the facet by x;, and x,. We
parametrize the interface as

g(x)=~x2+%¢<x> (11)

and discretize the interval 0<x < o into N points (with
Xy =x, and erx,,e) by using a convenient change of
variable. Furthermore, the curve is assumed to be sym-
metric around x =0 and we choose £(0)=0. Then the
remaining (N —1) variables are the profile function
points ¥(x;), with 2=<i=<n, and n,+1=<i <N, the field
points on the facet ¢(x;), with n, +1=<i <n,—1, plus the
coordinate x, of the beginning of the facet. But one has
N +1 equations: N —1 nonlinear equations obtained by
evaluating the integral (8a) or (8b) at the observation
points x; (i=1,...,N —1) and two tangential matching
conditions §'(x;)= —tan6,, for i=n, and i=n,. Thus,
there are two possible explanations: either the problem is
ill posed and it needs more parameters, or there are two
redundant equations. In the light of the analytical ap-
proach followed in [15] and in order to examine the first
possibility, one may introduce a supplementary degree of
freedom. In order to do this, one can introduce a non-
physical constant undercooling variation A¢ between the
front and trailing rough parts. For that, one has to
redefine the field ¢(x) in the front rough part by

_ 1
qS(x)—A((9)—5———[1_*_é_'2(::€))]3/2 +CA¢ for 0=x=x, .

(12)

This new parameter will be our Nth variable. Of course,
the physical solutions, if they exist, must correspond to a
zero of A¢. Since we still have one supplementary equa-
tion and no other variables to introduce, one must
suppress from the iterations one equation which should
be redundant. In the following, we will choose to
suppress the integral equation at x =x,. Therefore we
must verify after each iteration that this is really satisfied
to a reasonable accuracy. Also, it is important to note
that we did not impose the eigenvalue C to be an un-
known parameter, because this variable must be used to
impose a physical solution which must be smooth at
x=0. This is done by looking for eigenvalues C that
satisfy the condition £'(0)=0.

B. Model II

The model II gives a classical integrodifferential equa-
tion which has been the subject of many treatments
[9-14]. The difference with the work presented here
comes from the choice of the anisotropy in the surface
stiffness in Eq. (10a). Instead of using the multipole ap-
proximation 4(60)=1—ecos40, € being the rough anisot-
ropy coefficient, we take a sharply peaked function
around 6,=m/4 [Eq. (7)]. Note that Eq. (10a) is valid
everywhere since there is no real facet in this model. All
the points are equivalent except the point zero at the tip
where the condition £'(0)=0 must be satisfied. This
defines an equation for C. As can be noticed, we have
thus greatly simplified the formulation of the previous

mixed free-boundary problem. The only serious difficulty
which can occur consists in the numerical stability of the
results when the small parameter a goes to zero.

All integrals are performed to O(1/N?) and the solu-
tion is calculated using Newton’s method starting from
an initial numerical linearized solution around the
Ivantsov parabola as explained in [11].

IV. NUMERICAL RESULTS
A. Results for model I

Vanishing surface tension limit

Physically, the zero surface tension limit has no sense
for a faceted dendrite. However, let us assume that y is
small (or C large), so that the curvature effects on the
rough parts can be neglected. Formally, we obtain this
limit by setting C=1, ¢(x)=A¢ in the front rough part,
and ¢(x)=0 in the trailing one, everywhere in the above
equations. As can be observed in Fig. 1, the numerical
solution ¥(x) is smooth everywhere. Unfortunately, as is
shown in Fig. 2, the gap A¢ never vanishes, independent-
ly of the facet length. In order to obtain smooth func-
tions ¥(x), we have introduced a fictive unknown under-
cooling variation A¢ between the two rough parts. When
one sets A¢=0 and eliminates the tangential matching
condition at the point x, (or at x,) from the iterative
equations, the correction to the Ivantsov parabola always
presents a singularity at x =x, (or at x =x,) (see Fig. 3).
This ‘“zero” surface tension limit has been investigated
theoretically in the case of the one-sided model [15]. As
seen in Figs. 1 and 3, there is good agreement between
the analytical and numerical results. This comparison
confirms that in this limit there are no solutions in both
the symmetrical and the one-sided models of the DLG

O T 1 7T ] T T 1 7T I T T T 71 l L
—-0.02 — —
= L J
> r .
B (e)]
—0.04 —
r (a) ]
B ()

_0.06 L1 1 1 L1 11 | 111 1 I 1 1 1 1
-0 0.5 1 1.5 2

X

FIG. 1. Analytical (curve a) and numerical (curve b) solu-
tions ¥(x) for a vanishing surface tension, for A=0.3383 and
6,=m/4. The curve c corresponds to the correction ¥(x) in the
symmetrical model case for the same values of A and 6,. These
curves are obtained by assuming the existence of a variation A¢
between the two rough parts. The crosses show the beginning
and the end of the facets.
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FIG. 2. Behavior of the undercooling variation A¢ as a func-
tion of the facet length A for (curve a) the one-sided and (curve
b) the symmetrical model.
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FIG. 3. (A) Analytical (curve a) and the numerical (curve n)
solutions ¥(x), for the one-sided model, for A=0.1127 and
6,=m/4 when A¢=0 is imposed and the profile singularity is
chosen at x =x,. (B) Analytical (curve a) and numerical (curve
n) solutions ¥(x), for the one-sided model, for A=0.2571 and
6o=m/4 when A¢=0 is imposed and the profile singularity is
chosen at x =x,.

theory. Let us now introduce the surface tension effects
which perhaps may remove these singularities.

Nonvanishing surface tension

We will present in this section only the results obtained
for the one-sided model. In fact, the conclusions below
are not modified by the choice of the growth model. For
this case, we first scanned a large interval of values for
C (100=C =2000) and also for A values
(0<A=0.25/cosf,). In these ranges, we did not find
any physical solutions. Moreover, the absence of such
solutions does not depend on the choice of 6,. In Fig. 4,
we plotted the functions A¢=f(C) and £'(0)=g (C) for
two different values of the facet length A and facet direc-
tion 6,. It can be observed from the figures that the con-
centration gap A¢ and the shape slope at the origin £'(0)
do not vanish simultaneously. Moreover, when g(C)=0
has solutions, for 6,=m/4, f(C) does not change sign.
When f(C)=0 has solutions, for 8,=mu/3, g(C) is al-
ways negative; it only vanishes for C = co.

The origin of the difference between the plots of g (C)
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FIG. 4. (A) £'(0)=g(C) for A=0.1/cosb, (curve a); for
A=0.05/cos6, (curve b), with 6,=1/4, and for A=0.1/cos6,
(dashed curve), with 8,=m/3. (B) A¢=f(C) for A=0.1/cos,
(curve a), for A=0.05/cos6, (curve b), with 6,=m/4, and for
A=0.1/cos6, (dashed curve), with 6,=1/3.
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for 6,=m/3 and w/4 can easily be explained by a com-
parison of the singularities that are involved. When in-
troducing the surface tension effects in a completely
rough problem, the curvature term introduces a singular-
ity in the complex plane at the point z=x +it =i /2. The
WKB analysis shows that, for suppressing the effect of
this singularity, one must add another ingredient with a
singularity which lies in the Stokes sector delimited by
the Stokes line [26] defined by Im[S(z)]=0, where Im
denotes the imaginary part and S (z) is given by

S(= [+ 1+ 4u>) du | (13)
For the case of the rough interface, by assuming an aniso-
tropic surface tension, one adds a singularity which lies in
the interval [0,1] on the imaginary axis. For a faceted
problem, the facet itself entails a singularity which lies on
the real “physical” axis. For both small facet length and
small surface tension, this singularity is located at the
point x,=tan(8,)/2 [since {'(xy)= —tanfy=~ —2x,]. By
a simple numerical calculation, one finds that the Stokes
line intersects with the real axis at the point
X pmax =tan(0,..)/2, with 6., ~56.45°. So, in order to
have solutions for this problem, one must have xq <x ..
and consequently 6,=6, ... This is why the equation
g (C)=0 exhibits solutions for 8,=m/4( <0,,) and not
for 6y=m/3(>0,,,).

LN B N A B B B N B L B B
- (A) #
200

100

_Ol|||||||1J_LlLlll
-0 1 2 3

O.5x|vx|:1s||||||rﬁr¥

(B) EE-IFEE

u_Llll(l’ll!lllJ_l_Llllll

o
—-
L

_OlllLlJllllllll[llll

-0 0.5 1 1.5 2
49

1273

One can wonder if there exists a physical parameter
which, when taken into account, may cause the variable
A¢ to vanish at the same points where {'(0) vanishes.
Since we restricted ourselves to a Laplace approximation
for the diffusion field, one may think of the Péclet num-
ber. However, as in many growth processes, this parame-
ter has been shown not to be necessary for solving the
problem of the possible existence of solutions. Another
parameter which can play such a role is the rough anisot-
ropy coefficient. However, when introducing this param-
eter in our problem the results remain the same. The
rough anisotropy coefficient is not pertinent for a faceted
problem. This numerical study shows that the solutions
satisfying the physical constraint (A¢=0) exhibit singu-
larities at the ends of the facet, which cannot be
smoothed by a small amount of capillarity. One can ex-
pect that only strong surface tension may succeed in
suppressing them as was demonstrated in [15]. Unfor-
tunately, the numerical calculations for small C’s or large
A’s has given some satisfactory results but with a large
uncertainty. This is due to the fact that, in these limits,
the front rough parts occupy regions that are very small,
and consequently in the framework of this model the
numerics cannot be so accurate there.

Fortunately, within the model II, all the difficulties ex-
plained above disappear and one is faced with a standard
free-boundary problem [11]. The remaining difficulty

0 T T l T Trrr ]'TT T T ‘ T 1 1 T
i ©) ]
_5 f— —
L $=0.12
E L .
- i §=0.3 |
- 6=0.7 -
__15 11 1.1 I ) I T | | | T - [ 1 1 1 1
-0 0.5 1 1.5 2
X
O T 1T ]" TTT I TT7TT I TTr 1T
]
. D ]
-02|F ]
0.4 E_ -
E C ]
s C ]
-0.6 — —
-0.8 1 -
_1 —] 111 I L1 11 l L1 I 1.1 1} I 11 J‘:
-0 0.2 0.4 0.6 0.8 1
X

FIG. 5. (A) Selected first eigenvalue C(8) for 8,=1/4 in the framework of model II. (B) Resulting “facet” length A(8). The error
bars are due to the fact that the points corresponding to [tand—tanf,|=a lie between two points of the discretized interface. (C)
Corrections 1(x) to the Ivantsov parabola for selected shapes corresponding to different values of 8. (D) Selected shapes for the same
values of 8§ as in (C). For comparison, the dashed curve is the Ivantsov parabola.
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consists in the numerical stability of the results when the
stiffness becomes more and more peaked around
6,=m/4; so when a goes to zero. These results are
presented in the next section.

B. Results of model 1T

In model II, the profile shape is analytical everywhere
as soon as the slope at the tip vanishes [g (C)=0]. This
condition defines the eigenvalue C. So, except perhaps at
the tip, all the points of the profile are equivalent and
satisfy Eq. (10a). It is important to emphasize here that
the introduction of this model is a pure numerical neces-
sity. Therefore the physical solutions of a faceted den-
drite must not depend either on the choice of the approx-
imation for the Dirac distribution or on the magnitude of
the parameter a, as long as « is small. This model has
the advantage that all the points are equivalent, so the
number of equations is equal to the number of the un-
known variables. There is no need to introduce nonphys-
ical additional parameters, since there are no discontinui-
ties of the second derivative of the profile at the ends of
the facet, as in model I. The only consequence of this ap-
proach is that the “facet” is not strictly flat but there is a
part with a very small curvature. This is why a criterion
has to be imposed for the definition of the facet end
points. We choose to define the facet ends by the points
which have |tan6—tan901=a. The results we present
here are those obtained for the symmetrical model. In
both approximations [Eq. (7)], the numerical solutions
converged with a of order 1073, using the numerical
scheme explained in [11]. The first and rather amazing
result is the fact that the eigenvalue C is independent of
the representation that is chosen for the Dirac distribu-
tion: Gaussian [Eq. (7b)], or Lorentzian [Eq. (7a)]. As is
shown in Fig. 5(A), when the anisotropy coefficient & in-
creases from zero, the C eigenvalues decrease from
infinity up to a minimum value, then increase again al-
most linearly with 8. The eigenvalue C is always large,
even at the minimum: C_;, =62.8. In principle and as is
usually done in dendritic growth, this allows for a singu-
lar perturbation in the limit of vanishing 8 and small
“facets.” The fact that the eigenvalue C does not depend
on the surface stiffness approximation is a very puzzling
observation. Of course, the singularities in the complex
plane of x are independent of the model: z=i/2 and
z=1/2-+ie with € small. Nevertheless, we know that the
spectrum itself depends on the boundary layers around
the singularities, which are different for the Lorentzian
and Gaussian cases. This will be explained in a future
publication. From a physical point of view, it is satisfy-
ing that the results do not depend on the details of the
peaked surface stiffness. There is no difficulty in obtain-
ing the different eigenvalues and profiles of the infinite
discrete set but here we focus on the first eigenvalue,
which is generally assumed to be the only relevant one.

When § increases [Fig. 5(B)] the facet length increases
and seems to saturate at a value around 0.47 for the
Gaussian model. For the Lorentzian model, the results
are qualitatively equivalent but the facet length is smaller
for the same 8. Perhaps this is due to our definition of

MOKHTAR ADDA BEDIA AND MARTINE BEN AMAR 51

the facet ends which are more qualitative here. Finally,
Figs. 5(C) and 5(D) exhibit profile functions for three
different values of §. Figure 5(D) shows that in this ap-
proximation we are really able to obtain numerically
“facets” which reach appreciable sizes. Although we
have not performed the calculations, it is clear that a
similar representation can be used for the kinetic effects,
which will lead to increasing the facet length at fixed 8.

C. Comparison with the experimental results

The faceted dendrite experiment on NH,Br crystals [2]
has revealed two plateaus which correspond to two
different eigenvalues C. At low velocities, C is approxi-
mately 50; at the ‘“highest” velocities C is about 100.
From the experimental results, the nondimensioned facet
length A turns out to be about 0.145. Since, for this ex-
periment in solution, the one-sided model is more ade-
quate, one can expect a difference of a factor of 2 for a
thermal experiment, which would correspond to the sym-
metric model. As indicated in Fig. 5(B), the experimen-
tally found value A suggests a rather small “effective” an-
isotropy coefficient: 0.11 <8 =<0.12. Therefore, from Fig.
5(A), one obtains an estimate of the nonlinear eigenvalue
C: 94.25<C=111.84. This corresponds perfectly to
the first plateau in a thermal experiment. When the ve-
locity of the dendrite increases, the relative importance of
the kinetic effects decreases [3], so that the effective an-
isotropy coefficient § decreases. This implies an increase
of the eigenvalue C which could correspond to the second
plateau observed experimentally. Note that the con-
clusions are opposite for a much more anisotropic materi-
al which would have a & value greater than 0.3. There-
fore our calculation is consistent with the experimental
findings, although we have completely neglected three-
dimensional effects. Of course, it is also consistent with a
dynamical roughening transition around the critical ve-
locity between the two plateaus. It cannot discriminate
between these two interpretations which have been dis-
cussed in [3].

V. CONCLUSION

The main conclusion of this paper is that the DLG
model of dendritic growth has no solutions in the limit of
vanishing capillary number of the rough parts. In this
limit we show that the model is overconstrained. Solu-
tions can be obtained only if one relaxes some physical
condition: for instance, if one allows the rough parts to
have either an undercooling difference or nontangential
matchings with the facets. We have not succeeded in
proving unambiguously that solutions can exist for this
model when surface tension is taken into account, con-
trary to our previous analysis for directional solidification
[16]. When the surface stiffness is approximated by a
peaked function (model II), the constraints of the free-
boundary model I disappear and we get clear and unam-
biguous results: there is selection of the velocity of the
needle crystal and selection of the facet ends, once the an-
isotropy & of the W plot is known. Of course, if one
knows the thermodynamic coefficient of the roughening
transition (the W plot and the kinetic coefficients), one
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can use this model and the algorithm derived from it to
explain the existence of the two plateaus. Our
modification of the BP model proves that steady faceted
needle crystals can exist in the context of the DLG
theory.
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